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We describe the implementation of the spin-unrestricted Laplace transform fourth-order
perturbative triples correction. A reduction in the computational scaling with respect to ca-
nonical implementations is attained without relying on the large molecule asymptote. The
intrinsic scaling difficulties that the Laplace equations exhibit upon increasing the size of
the basis sets are properly addressed. The method is suited for medium-size molecules.
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The complexity and computational cost of electron correlation theories in-
crease rapidly with the level of approach and the size of the systems consid-
ered. Configuration interaction (CI)1 and coupled cluster (CC)2,3 theories
must include at least up to triple excitations in the accurate treatment of at-
oms and molecules4–6. Denoting by N the measure of a system size, e.g. the
number of basis functions, the computational cost scales in principle as
O(N8) in an iterative-equation-solving procedure7,8. This high computa-
tional cost has spurred the development of a number of augmented tech-
niques7,9–11. These techniques correct the energies from the singles and
doubles wavefunctions with a perturbative, non-iterative triples contribu-
tion, which scales as O(N7). Among the augmented approaches, the
CCSD(T) method12, which includes the connected coupled cluster singles
and doubles and a fourth- and fifth-order triples correction, is regarded as
possibly the best balance between efficiency and accuracy. It should be
mentioned that recently much work has also been carried out in the devel-
opment of so-called linear scaling coupled cluster methods13–15.
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Many-body perturbative expansions have been historically formulated in
the canonical spin-orbital basis, i.e., the basis that diagonalizes the Fock op-
erator. The resulting equations are simpler and exhibit a lower computa-
tional prefactor. The perturbative triples expression consists formally of a
series of O(N10) terms. Each term is composed of a product of two integrals
and two amplitudes that are divided by a sum of six diagonal Fock ele-
ments. Conveniently arranged, the summation over the ten-index series
can be performed in O(N7) steps. Häser and Almlöf first noted that a more
advantageous O(N6) arrangement is still attainable provided the energy de-
nominators are factorized16. The factorization is feasible if the denomina-
tors are substituted by a Laplace transform quadrature. An alternative
factorization based on the Cholesky decomposition of the denominators
has also been proposed recently17.

The introduction of the Laplace ansatz not only simplifies the sequences
of tensor contractions. Once the Laplace kernel is factorized and included
as part of attenuated integrals and amplitudes, the canonical constraint is
lifted. The resulting equations are invariant under unitary orbital trans-
forms, although they keep the simplicity and closed form of the canonical
formulation. The advantages of these transforms have already been demon-
strated in early works on low-order perturbation theory16,18,19. Indeed, lo-
calized, atomic representations have produced accurate linear scaling
approaches to MP2 energies20. The energy invariance under unitary trans-
forms of the virtual spin-orbitals facilitates removing an intrinsic ineffi-
ciency in the factorized, fourth-order triples correction21. Although the
whole set of equations scales as O(N6) as much, they exhibit an unfavorable
dependency on large basis sets. Some contributions specifically scale as
O(OV5), for O being the number of occupied orbitals and V the number of
virtuals. The projection of the attenuated integrals and amplitudes into a
generalized natural orbital basis permits an efficient screening that reduces
to O(OV4) the computation of these contributions.

The present article extends our previous implementation21 of the Laplace
factorization of the perturbative triples to the unrestricted, open-shell case.
It focuses on the derivation of the fourth-order terms and on the analysis of
their accuracy and performance. The number of Laplace fifth-order terms is
substantially reduced. The most expensive ones exhibit only an O(O3V3)
scaling. Although their contribution is important for the accuracy of most
(T) methods, the implementation is left to a separate paper.

The article is organized as follows. The section Triple Substitutions in
Fourth-Order Perturbation Theory introduces first the canonical triples equa-
tions. In the subsection Laplace Factorization, the Laplace transform quadra-
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ture is applied, triples terms are rearranged and integrated. Then, sub-
section Large Basis Sets introduces the generalized natural orbital projection
and subsection Screening presents improved techniques that simplify inter-
mediate computations. The next section, Benchmarks, focuses on the two
main performance-related issues, i.e., efficiency and accuracy. While com-
putational efficiency is centered on the CCSD(T) method, accuracy is also
analyzed for BD(T)22, QCISD(T)23–25 and MP4(T)9,26. The subsection Effective
Scalings presents an illustrative, practical approach to the triples complex-
ity. In subsection Accuracy, Laplace triples energy deviations are analyzed.
The subsection Naphthalene, an Illustrative Computation treats together effi-
ciency and accuracy from an applied point of view. Final remarks are pre-
sented in the Conclusions section.

TRIPLE SUBSTITUTIONS IN FOURTH-ORDER PERTURBATION THEORY

The fourth-order contribution to triple substitution presents the general
form9

E W Dijk
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ijk
abc

abcijk
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[4] = − ∑∑1

36
2| | / . (1)

Triple excitations Wijk
abc factorize as products of the two-electron quantities
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Quantities t rs
pq are the amplitudes for the converged singles and doubles

wavefunctions and vrs
pq are integrals antisymmetrized according to

vrs
pq = 〈rs||pq〉 = 〈rs|pq〉 – 〈rs|qp〉 . (3)

Operators Pqr
p perform the antisymmetric permutations of index p with indi-

ces q and r,

Pqr
p

pqr qpr rpq(•) • • • .= − − (4)

Denominators Dijk
abc in Eq. (1) are given by the difference of diagonal ele-

ments of the considered reference determinant
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D f f f f f fijk
abc

aa bb cc ii jj kk≡ + + − − − . (5)

As usual, indices p, q, r, s, ... refer to unspecified spin-orbitals. Indices i, j, k,
..., (a, b, c, ...) specifically refer to occupied (unoccupied) spin-orbitals in the
reference configuration. The number of occupied (unoccupied) orbitals will
be denoted as Oα and Oβ (Vα and Vβ), according to spin cases. Number N
will refer to the number of correlated orbitals, without specifying spin or
their occupied or virtual nature, thus simply representing a size measure of
the electronic system.

The augmented methods CCSD(T) and QCISD(T) include an additional
correction to properly balance the contribution of single and double excita-
tions. This particular, fifth-order addition, EST

[5] , is given by12,23

E V W Dijk
abc

ijk
abc

ijk
abc

abcijk
ST
[5] = − ∑∑ / , (6)

with Vijk
abc being

V P P t vijk
abc

ij
k

ab
c

i
a

jk
bc= [ ]. (7)

The triples (T) correction is finally computed as

E E E(T) T
[4]

ST
[5]= + (8)

in a non-iterative, O(O3V4+O4V3) procedure.

Laplace Factorization

The Laplace transform of the denominators Dijk
abc in Eq. (1) gives the fourth-

order triples contribution ET
[4] as the integral

E W sijk
abc D s

abcijk

ijk
abc

T
[4] e d .= − ∑∑∫

∞1
36

2

0

| |
–

(9)

Expanding integral (9) in a finite series yields the formula
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where wl are appropriate quadrature weights. The factorization of the
Laplace kernel permits to express the energy ET

[4] in terms of attenuated am-
plitudes and integrals t (sl) and v(sl),

[ ]E w P P t v t vl ij
k

ab
c

ij
af

kf
cb

im
ac

bm
jk

l
T
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36
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Summation over repeated indices is assumed and the sl dependence of the
amplitudes and integrals is removed for notation simplicity. Barred quanti-
ties t ij

af , vkf
cb , t im

ac and vbm
jk are, respectively, t eij

af s f f fl ii jj aa( – )/+ 2
, v ekf

cb s f f fl kk bb cc( – – )/2 ,

t eim
ac s f f fl ii aa cc( – – )/2 and v ebm

jk s f f fl jj kk bb( – )/+ 2
.

Denoting by o any of the occupied indices i, j, k, and by v any of the a, b,
c virtuals, the complete expansion of Eq. (11) leads to 92 terms for each of
the three sets characterized by templates t t v voo

vf
oo
vg

of
vv

og
vv , t t v vom

vv
on
vv

vm
oo

vn
oo and

t t v voo
vf

om
vv

of
vv

vm
oo . Hereafter these sets will be denoted by {fg}, {mn} and {fm}, re-

spectively.
Thus, there are in total 243 spin-orbit terms contributing to the ET

[4] en-
ergy. For the sake of computational efficiency, these terms are classified and
computed according to spin cases. Each expanded term implies a summa-
tion over 8 indices. In turn, each index runs over the spin alpha and beta
cases. Splitting the above 243 terms according to spin cases leads to a total
of 243 28, i.e., 62 208 terms. After checking for spin orthogonalities, this
amount is reduced to 1314 non-zero terms for each set. The redundancies
arising from having 8 different indices on a four-factor product of four-
index arrays permit additional simplifications. Accordingly, sets {fg} and
{mn} each posses 34 non-redundant terms, while group {fm} has 44 different
contributions. In summary, after expanding and simplifying Eq. (11), the
unrestricted Laplace ET

[4] energy is reduced to a total of 112 terms.
A representative term, denoted by e fg

1
{ } , i.e., the first term in set {fg}, is

e t t v vfg
i j
a f

i j
c g

k f
b c

k g
b

1
{ } ( )( ) .= α α

α α
α α
α α

α α
α α

α α
αα α (12)

The parentheses indicate its lowest scaling contraction. Amplitudes are con-
tracted by summing over i and j, while integrals over k and b. The contribu-
tion e fg

1
{ } is then evaluated by summing up f, g, a and c. In this way, the
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eight-index summation scales as O(O Vα α
2 4 +O Vα α

5 ), or, in short, as O(N6). Al-
though there is a combinatorial number of possible summation schemes for
e fg

1
{ } , the lowest, O(N6) one is unique. This same property applies to the

complete set of ET
[4] terms. The lowest scaling Laplace arrangement has then

88 terms scaling as O(N6) and 24 ones scaling as O(N5).
According to this set classification of terms, the energy expression reads

E w e s e s e sl
fg

l
mn

l
fm

l
l

T
[4] = + −∑1

36
2[ ( ) ( ) ( )] ,{ } { } { } (13)

where each contribution e{pq} is the sum of all the terms in the set. In our
implementation indices fg, mn, and fm are taken as the outermost loops.
For each of those pairs, the inner tensor contractions are performed as ma-
trix multiplications. Thus, the two contractions in Eq. (12) are done for
each f and g, as a summation over ij for all a and c, and a summation over
kb for all a and c. The result are two VαVα matrices, t(fg) and v(fg), coming
from the amplitude and integral contractions, respectively. The fg portion
of term e fg

1
{ } is then the trace Tr[t(fg)v(fg)]. Although the complete number of

terms is 112 and each term considers two tensor contractions, the number
of different intermediate matrices is only 132. If Eq. (13) is evaluated ac-
cording to the spin blocks in the sets fg, mn and fm, storage of no more
than six matrices suffices for a complete reuse of intermediates. In addition,
using few appropriate permutations of the intermediates, the portions fg
and mn of the sums e{fg} and e{mn} are symmetric, i.e., e fg

fg{ } = e gf
fg{ } and e mn

mn{ } =
e nm

mn{ } .
The numerical integration of the Laplace transform, Eq. (9), is simple yet

accurate21. The integration is over a series of exponential functions that is
monotonically decreasing and positive everywhere. Substituting variable s
by the logarithm transformation

s
D

x= −1

min

ln (14)

the integrand becomes a power series, formally

E
D

z x x
D

D
T
[4]

min

min d= − −

∑∫
1 1

0

1

ν
ν

ν

. (15)

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

362 Constans, Scuseria:



Series coefficients zν and powers Dν are readily identifiable from Eq. (9). Pa-
rameter Dmin is the triples gap, i.e., the minimum denominator. Such a
choice minimizes the series slope and, therefore, the error bounds in the
quadrature. Quadrature is easily and conveniently performed using the
Gauss–Legendre open rule. This integration scheme is accurate. It produces
triple corrections within mEh to µEh accuracy using few, no more than two
to four quadrature points.

Large Basis Sets

The efficient implementation of the triples Laplace ansatz needs to address
an intrinsic large basis set penalty. Of the complete set of 132 different ten-
sor contractions, there are 8 that scale as O(OV5) for increasing basis sets.
This introduces a serious disadvantage of the method with respect to the
canonical O(O3V4) implementation.

The invariance of the Laplace energy, Eq. (11), upon unitary transforma-
tions of the attenuated virtual (occupied) spin-orbitals facilitates, however,
the evaluation of those contractions. As pointed by Klopper et al.27 the con-
vergence to complete basis set for triple excitations is fast enough to permit
reliable truncations of the virtual space. Natural orbitals (NO) provide such
a convenient way to fasten convergence.

Generalized NOs are here defined as the set that diagonalizes the second-
order probability density matrix D(2), of elements

D t t t ta b i j
a c

i j
b c

i j
a c

i j
b c

α α α α
α α

α α
α α

α β
α β

α β
α β( ) ,2 2= + (16)

D t t t ta b i j
a c

i j
b c

i j
a c

i j
b c

β β β β
β β

β β
β β

β α
β α

β α
β α( )2 2= + (17)

and

D Da b a bα β β α
( ) ( ) ,2 2 0= = (18)

constructed through the converged, doubles amplitudes. The spin-block
diagonalization of D(2) produces two unitary matrices Rα and Rβ which de-
fine the transformation to the natural virtual orbital basis. The transforma-
tion Rα or Rβ is then applied, respectively, to each virtual index α or β, to
project integrals v and amplitudes t at each quadrature point. Upon this ba-
sis change, the matrix e{fg} of elements e fg

fg{ } or in short efg is best suited for
screening.
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Screening

The computation of the contributions e{fg}(sl), in Eq. (13), is performed ac-
cording to an ordered procedure, from the smallest value of s to the largest.
The summation over the indices f and g is done according to spin blocks,
i.e., first over fα gα or fβ gβ and then over fα gβ. Screening criteria are applied
to identify negligible efg elements. Being matrix e{fg} positive definite, the in-
equality

e e e
e

e e e efg ff gg
hh

ff gh gg fh
2 1 2 1 2 21≤ − −( )/ / (19)

holds for all indices f, g and h. Inequality proof follows from the positive-
ness of all principal minors of e{fg} and from the Cauchy–Schwarz inequal-
ity28. The sequence to complete the summation e{fg}(s1) begins by evaluating
the elements e11 and e22. Then, e21 is evaluated only if the product e11e22 is
greater than a threshold τ. Next in the sequence is the computation of ele-
ment e33. Element e32 is computed provided e22e33 > τ. The evaluation of e31
is then decided through the improved Cauchy–Schwarz criterion, inequal-
ity (19), using the off-diagonal elements e31 and e21. In this way, the non-
negligible terms are computed and summed, for f equal 1 to V and for g
equal f to 1. Computed nondiagonal elements egh and efh are successively in-
corporated to sharpen the inference criteria. The improvement over a sim-
ple Cauchy–Schwarz screening appears to be dependent on the system and
the basis set considered.

The effectiveness of the screening increases with the basis set size. Fig-
ures 1 and 2 show the e{fg} matrix density plots for benzene molecule, in
CCSD(T) = fc/cc-pVDZ and CCSD(T) = fc/aug-cc-pVDZ computations, re-
spectively, performed trough a two-point quadrature. In black are depicted
the matrix elements such that |efg| > 10–6. In white, the elements inferred to
be smaller than 10–6 by inequality (19). Grey elements are smaller than this
threshold though undetected by rule (19). The diagonal elements are al-
ways computed. They appear either black or grey, accordingly.

At the quadrature point s1, the whole e{fg} needs to be computed for the
smallest basis set cc-pVDZ, Fig. 1. At the point s2, computational savings
start being notorious. Figure 2 visualizes the fact of the increasing number
of negligible efg elements as basis sets are enlarged. Matrix density plots are
also reported for benzene computations running through the closed- and
open-shell implementation. Screening patterns are similar in both imple-
mentations. The peculiarities of these patterns, i.e., the sparsity shown at
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the low f, g values, are a consequence of ordering the eigenvalues and
eigenvectors of the generalized density matrix D(2). Upon the rotation of
the virtual orbitals, the diagonal elements of the e{fg} matrix appear in an
approximate ascending order. The off-diagonal elements with low f or g in-
dices are thus smaller and most likely inferred to be negligible.

Suitable additional speedup is available by assuming the inequality

| ( )| | ( )|e s e sfg l fg l+ ≤1 (20)
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FIG. 1
Matrix e{fg}(si) density plots for the benzene CCSD(T) = fc/cc-pVDZ computation at quadrature
points a s1 and b s2; c and d are the corresponding open-shell code e{fg}(si) density plots
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for all sl+1 ≥ sl. Computed off-diagonal terms that appear to be below τ at
the point sl are disregarded from computation at the next point sl+1. The
exponential attenuation of the integrals and amplitudes introduced by the
Laplace weights permits a significant reduction in the number of elements
to be computed. Figures 1 and 2 also illustrate the Laplace attenuation.
Gray, computed elements at point s1 are no longer evaluated at point s2.
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FIG. 2
Matrix e{fg}(si) density plots for the benzene CCSD(T) = fc/aug-cc-pVDZ computation at quadra-
ture points a s1 and b s2; c and d are the corresponding open-shell code e{fg}(si) density plots
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BENCHMARKS

The performance of the implemented Laplace ansatz for the triples correc-
tion is being analyzed in a series of benchmark computations. The imple-
mentation is tested and included in the Gaussian development version29.
All computations are performed on a single processor of an IBM-p690
Power4 machine. The screening threshold τ is set to 10–6 in all computa-
tions. This is a rather conservative value that keeps truncation errors below
the ones intrinsic to the two- and three-point integrations used here.

Effective Scalings

The actual scaling behavior of the Laplace triples ansatz is complicated by
the complexity of its 112 terms and by the applied screenings. The follow-
ing series of computations provide a practical illustration. Triples timings
versus size results are plotted in Figs 3 and 4 for Laplace and canonical com-
putations running on closed- and open-shell codes. A two-point quadrature
is used in all these Laplace computations. Figure 3 presents time variations
as the number of virtuals V increases while the number of occupied orbitals
O is kept constant. Computations are performed for the neon atom at the
CCSD(T) = full/cc-pVnZ levels, with n ranging from double to sextuple po-
larization. By fitting time values to a power curve t(V) = aVb, the deter-
mined scalings b are approximately 3.8 in all four sets of computations.
Thus, the O(OV5) penalty on Laplace CCSD(T) and UCCSD(T) is completely
removed by the proposed screening.

Figure 4 presents time variations with respect to the number of virtuals at
a constant V/O ratio. Chains of 2, 4, 6, 8 and 10 neon atoms are considered.
Atoms are placed at distance dNeNe equal to 2.5 Å. Computations are per-
formed at the CCSD(T) = fc/cc-pVDZ level. The fitted b parameter is here
5.5 for the open- and closed-shell Laplace curves. The corresponding ca-
nonical implementations present a scaling of 6.7, clearly one order of mag-
nitude more. Crossover between Laplace and canonical lies between three
and four Ne atoms.

An analogous procedure is used to estimate the effective scaling varying
occupied orbitals with a fixed number of virtuals. The four-atom chains
Ne[4] and Ne[4]2– are used, at the levels CCSD(T) = fc/cc-pVDZ and
CCSD(T) = full/cc-pVDZ. The scaling with respect to the number of occu-
pied orbitals O is 2.4 and 3.5 for the Laplace and canonical implementa-
tions, respectively. This dependency clearly favors the Laplace imple-
mentation on core-valence correlation computations.
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Accuracy

The Laplace implementation of the perturbative triples correction includes
two numerical approaches. The Laplace transform itself is numerically com-
puted and the matrix elements in e{fg} are screened to either reduce the
prefactor and the effective scaling. Thus the scaling advantages of the
Laplace implementation with respect to the canonical one have to be con-
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FIG. 3
Triples timing versus the number of virtuals V (O = const.) for the neon atom, at CCSD(T) =
full/cc-pVnZ, n = 2, 6, using a two-point quadrature and a threshold τ = 10–6. a closed-shell, b
open-shell codes. Open marks indicate the timings for the Laplace computations while solid
marks correspond to canonical computations. The fitted parameter b – see text – is 3.8 for all
four curves
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trasted by the attainable level of accuracy. In order to assess the Laplace tri-
ples accuracy, the G2/97 test set of molecules30,31 is considered. For
simplicity, only the Dunning’s cc-pVDZ basis set with frozen core orbitals is
used here. Molecules containing Li, Be, Na or Mg atoms are excluded from
the G2/97 test set. Also excluded are the species 4N and 4O+ due to an ex-
tremely short triples gap that complicates the logarithm transform used in
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FIG. 4
Triples timing versus number of virtuals V (O = const.) for neon chains of 2, 4, 6, 8 and 10 at-
oms, at CCSD(T) = fc/cc-pVDZ, using a two-point quadrature and a threshold τ = 10–6. a
closed-shell, b open-shell codes. Open marks indicate the timings for the Laplace computa-
tions while solid marks correspond to canonical computations. The fitted parameter b – see
text – is 5.5 for the Laplace curves and 6.7 for the canonical ones
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the Laplace quadrature. In total, 288 molecules are considered, with 131
open-shell and 157 closed-shell computations.

The fourth-order triples correction ET
[4] is computed for CCSD(T), BD(T),

QCISD(T) and MP4(T). Although all four methods share the same triples
equations, amplitude values may differ significantly. A separate analysis of
accuracy is therefore desirable for each of them. Table I reports the mean
absolute deviation |∆e|, the minimal and maximal deviations, ∆min and ∆max,
respectively, and the percentiles 10 and 90, p10 and p90, for the four meth-
ods.

The two- and three-point quadratures provide energies completely within
mEh accuracy in all molecules and methods. Maximal negative differences
include the small species CN+, CF4 and N2O in all methods, though on a
slightly different ranking. At the other end, maximal positive differences
correspond to the atoms 3B–, 4C and 1N+. Except for some outlayers, as
shown by the percentile values, the accuracy using a three-point quadrature
is close to µEh accuracy for the 230 molecules within p10 and p90.

Naphthalene, an Illustrative Computation

A practical example on the accuracy and computational gains of the
Laplace ansatz is presented here. Accuracy is analyzed in terms of thermo-
chemical and absorption data. Computational speedups are reported as ra-
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TABLE I
Mean absolute deviation, minimum and maximum deviations and percentiles 10 and 90 of
Laplace versus canonical ET

[4] energies, for the G2/97 test set of molecules and for the number
n of quadrature points. Deviations ∆ in mEh

Method n | |∆ ∆min ∆max p10 p90

CCSD(T) 2 0.049 –0.086 1.077 –0.013 0.114

3 0.019 –0.048 0.848 –0.014 0.003

BD(T) 2 0.053 –0.084 1.084 –0.012 0.119

3 0.018 –0.038 0.830 –0.013 0.003

QCISD(T) 2 0.049 –0.092 1.079 –0.015 0.113

3 0.019 –0.056 0.848 –0.015 0.003

MP4(T) 2 0.039 –0.095 0.504 –0.011 0.115

3 0.012 –0.046 0.466 –0.014 0.005



tios over the canonical triples. The selected benchmark is the singlet and
triplet states of naphthalene. Their planar geometries are optimized at the
MP2(full)/6-31g(d) level of theory and the triples ET

[4] energies are computed
at the CCSD(T) = fc/cc-pVDZ and CCSD(T) = full/cc-pVDZ level. The
Laplace ansatz, as in the previous section, considers two- and three-point
quadratures.

Table II reports the values of the canonical ET
[4] energies, heats of forma-

tion ∆f H0, and the singlet-triplet gap ∆ET←S. Laplace values are the corre-
sponding deviations, expressed as mEh, kcal/mol and eV, respectively.
Timing ratios tC/tL refear to canonical over Laplace, and tpp are averaged
times per quadrature point, on the time-scale given by the extent of the ca-
nonical computation.

Accuracy follows a similar pattern as the one seen in the G2/97 set analy-
sis. Core-correlated energies exhibit a sensibly lower accuracy due to the
larger range of energy denominators appearing in the transform quadra-
ture. In all cases, however, heats ∆f H0 deviate less than 1 kcal/mol if two in-
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TABLE II
Canonical versus Laplace singlet and triplet CCSD(T)/cc-pVDZ energies for naphthalene. The
number of quadrature points is n. Timings tC/L are canonical with respect to Laplace ratios
and tpp are per quadrature point with respect to the canonical time

Parameter

Singlet Triplet

canonical n = 2 n = 3 canonical n = 2 n = 3

ET
[ ]4 a –64.718 –0.784 –0.052 –64.367 –1.017 –0.022

∆fH0
b –2004.84 –0.49 –0.03 –1938.85 –0.64 –0.01

∆ET←S
c 2.86 –0.03 0.00

tC/tL 1.57 1.20 1.25 0.96

tpp 0.32 0.28 0.40 0.35

full

ET
[ ]4 a –65.209 –1.239 –0.193 –64.866 –1.500 –0.189

∆fH0
b –2012.56 –0.78 –0.12 –1946.50 –0.94 –0.12

∆ET←S
c 2.86 –0.04 –0.01

tC/tL 2.90 2.23 2.25 1.71

tpp 0.17 0.15 0.22 0.19

a In mEh. b In kcal/mol. c In eV.



tegration points are used, and around a tenth of kcal/mol for a three-point
quadrature. Singlet-triplet gaps ∆ET←S appear in all cases within hundredth
eV accuracy.

The crossover with respect canonical implementations is sensitive to the
number of occupied orbitals involved in the computation. Systems rich in
hydrogen atoms or frozen-core computations on light atoms exhibit cross-
over at relatively large sizes. There is a strong contrast between the naph-
thalene tC/tL ratios in Table II and the attained crossover at the Ne[4] chain
for those equivalent, CCSD(T) = fc calculations. The higher prefactors ef-
fecting Laplace implementations need to be absorbed by their scaling ad-
vantages. As seen before, both Laplace and canonical implementations
exhibit an effective O(V4) scaling. On the other hand, the prefactor-scaling
tradeoff easily favors Laplace transform if the number of involved occupied
orbitals O is large. The effective scalings are then O(O2.4) and O(O3.5) for the
Laplace and canonical implementations, respectively. As a rule of thumb,
on naphthalene-like systems fully correlated Laplace computations within
mEh accuracy are approximately as expensive as the canonical, frozen-core
ones. Both, the full-correlation Laplace and the frozen-core canonical com-
putations require approximately five CPU hours, while the fully correlated
canonical one requires about fifteen hours.

Regarding a comparison of the two, closed- and open-shell implementa-
tions, the time per point ratios tpp relative to the canonical computation in-
dicate that the closed-shell one is slightly more efficient.

CONCLUSIONS

This article has dealt on the general, spin-unrestricted implementation of
the Laplace fourth-order perturbative triples. The Laplace factorization of
the energy denominators permits a lower scaling arrangement of the triples
equations. The scaling is reduced from O(N7) to O(N6) without hinging on
large molecule assumptions. The required numerical integration of the
Laplace transform readily produces results within chemical accuracy.

The large-basis-sets disadvantage intrinsic to the Laplace triples is obvi-
ated through a convenient application of the orbital invariance properties
of the Laplace energies. The relative efficiency of the Laplace closed- and
open-shell codes with respect to the canonical implementations has to be
analyzed in terms of the number of correlated electrons rather than in
terms of the number of basis functions. The applicability of the Laplace tri-
ples appears best suited in a context of a sufficiently large number of corre-
lated electrons.
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